4.8 Article

Large anomalies in lower stratospheric water vapour and ice during the 2015-2016 El Nino

Journal

NATURE GEOSCIENCE
Volume 10, Issue 6, Pages 405-+

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/NGEO2961

Keywords

-

Funding

  1. CALIPSO project
  2. NASA ROSES [NNH15ZDA001N-CCST]
  3. NOAA's Climate Program Office

Ask authors/readers for more resources

The strong and unusual El Nino of 2015-2016 produced a remarkable perturbation to the hydrologic budget of the tropical tropopause layer (14-19 km). This region regulates stratospheric water vapour, which has a direct radiative impact on surface temperatures. To first order, the coldest tropical tropopause temperature regulates the amount of water vapour entering the stratosphere by controlling the amount of dehydration in the rising air. Here we show that tropical convective cloud ice and associated cirrus sublimating at unusually high altitudes might also have a role in stratospheric hydration. The 2015-2016 El Nino produced decadal record water vapour amounts in the tropical Western Pacific, coincident with warm tropopause temperature anomalies. In the Central Pacific, convective cloud ice was observed 2 km above the anomalously cold tropopause. A trajectory-based dehydration model based on two reanalysis temperature and wind fields can account for only about 0.5-0.6 ppmv of the similar to 0.9 ppmv tropical lower stratospheric moistening observed during this event. This suggests that unresolved convective dynamics and/or associated sublimation of lofted ice particles also contributed to lower stratospheric moistening. These observations suggest that convective moistening could contribute to future climate change-induced stratospheric water vapour increases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available