4.8 Article

Mobility and persistence of methane in groundwater in a controlled-release field experiment

Journal

NATURE GEOSCIENCE
Volume 10, Issue 4, Pages 289-+

Publisher

NATURE PORTFOLIO
DOI: 10.1038/NGEO2919

Keywords

-

Funding

  1. Natural Sciences and Engineering Research Council of Canada (NSERC) [463045-14]
  2. AITF/Eyes High Postdoctoral Fellowship programme
  3. Campus Alberta Innovation Chair Program
  4. Canadian Foundation for Innovation
  5. Alberta Small Equipment Grant Program
  6. NSERC Discovery Grant
  7. Banting Postdoctoral Fellowship

Ask authors/readers for more resources

Expansion of shale gas extraction has fuelled global concern about the potential impact of fugitive methane on groundwater and climate. Although methane leakage from wells is well documented, the consequences on groundwater remain sparsely studied and are thought by some to be minor. Here we present the results of a 72-day methane gas injection experiment into a shallow, flat-lying sand aquifer. In our experiment, although a significant fraction of methane vented to the atmosphere, an equal portion remained in the groundwater. We find that methane migration in the aquifer was governed by subtle grain-scale bedding that impeded buoyant free-phase gas flow and led to episodic releases of free-phase gas. The result was lateral migration of gas beyond that expected by groundwater advection alone. Methane persisted in the groundwater zone despite active growth of methanotrophic bacteria, although much of the methane that vented into the vadose zone was oxidized. Our findings demonstrate that even small-volume releases of methane gas can cause extensive and persistent free phase and solute plumes emanating from leaks that are detectable only by contaminant hydrogeology monitoring at high resolution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available