4.8 Article

A homodimer interface without base pairs in an RNA mimic of red fluorescent protein

Journal

NATURE CHEMICAL BIOLOGY
Volume 13, Issue 11, Pages 1195-+

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/NCHEMBIO.2475

Keywords

-

Funding

  1. NIH
  2. US Department of Energy
  3. NIH [R01 NS064516]
  4. NIH-Oxford-Cambridge Research Scholars Program
  5. intramural program of the NHLBI

Ask authors/readers for more resources

Corn, a 28-nucleotide RNA, increases yellow fluorescence of its cognate ligand 3,5-difluoro-4-hydroxybenzylidene-imidazolinone-2-oxime (DFHO) by >400-fold. Corn was selected in vitro to overcome limitations of other fluorogenic RNAs, particularly rapid photobleaching. We now report the Corn-DFHO co-crystal structure, discovering that the functional species is a quasi-symmetric homodimer. Unusually, the dimer interface, in which six unpaired adenosines break overall two-fold symmetry, lacks any intermolecular base pairs. The homodimer encapsulates one DFHO at its interprotomer interface, sandwiching it with a G-quadruplex from each protomer. Corn and the green-fluorescent Spinach RNA are structurally unrelated. Their convergent use of G-quadruplexes underscores the usefulness of this motif for RNA-induced small-molecule fluorescence. The asymmetric dimer interface of Corn could provide a basis for the development of mutants that only fluoresce as heterodimers. Such variants would be analogous to Split GFP, and may be useful for analyzing RNA co-expression or association, or for designing self-assembling RNA nanostructures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available