4.8 Article

In vivo FRET-FLIM reveals cell-type-specific protein interactions in Arabidopsis roots

Journal

NATURE
Volume 548, Issue 7665, Pages 97-+

Publisher

NATURE PORTFOLIO
DOI: 10.1038/nature23317

Keywords

-

Funding

  1. NWO VIDI grant
  2. ERC Advanced Grant SysArc
  3. NWO Spinoza Grant
  4. NWO ALW-VIDI grant [864.09.015]
  5. DFG [WE 5343/1-1]

Ask authors/readers for more resources

During multicellular development, specification of distinct cell fates is often regulated by the same transcription factors operating differently in distinct cis-regulatory modules(1-3), either through different protein complexes, conformational modification of protein complexes, or combinations of both. Direct visualization of different transcription factor complex states guiding specific gene expression programs has been challenging. Here we use in vivo FRET-FLIM (Forster resonance energy transfer measured by fluorescence lifetime microscopy) to reveal spatial partitioning of protein interactions in relation to specification of cell fate. We show that, in Arabidopsis roots, three fully functional fluorescently tagged cell fate regulators establish cell-type-specific interactions at endogenous expression levels and can form higher order complexes. We reveal that cell-type-specific in vivo FRET-FLIM distributions reflect conformational changes of these complexes to differentially regulate target genes and specify distinct cell fates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available