4.8 Article

Higher-order interactions stabilize dynamics in competitive network models

Journal

NATURE
Volume 548, Issue 7666, Pages 210-+

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature23273

Keywords

-

Funding

  1. Human Frontier Science Program
  2. NSF [DEB-1148867]
  3. US Department of Education [P200A150101]
  4. Direct For Biological Sciences
  5. Division Of Environmental Biology [1148867] Funding Source: National Science Foundation

Ask authors/readers for more resources

Ecologists have long sought a way to explain how the remarkable biodiversity observed in nature is maintained. On the one hand, simple models of interacting competitors cannot produce the stable persistence of very large ecological communities(1-5). On the other hand, neutral models(6-9), in which species do not interact and diversity is maintained by immigration and speciation, yield unrealistically small fluctuations in population abundance(10), and a strong positive correlation between a species' abundance and its age(11), contrary to empirical evidence. Models allowing for the robust persistence of large communities of interacting competitors are lacking. Here we show that very diverse communities could persist thanks to the stabilizing role of higher-order interactions(12,13), in which the presence of a species influences the interaction between other species. Although higher-order interactions have been studied for decades(14-16), their role in shaping ecological communities is still unclear(5). The inclusion of higher-order interactions in competitive network models stabilizes dynamics, making species coexistence robust to the perturbation of both population abundance and parameter values. We show that higher-order interactions have strong effects in models of closed ecological communities, as well as of open communities in which new species are constantly introduced. In our framework, higher-order interactions are completely defined by pairwise interactions, facilitating empirical parameterization and validation of our models.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available