4.8 Article

Inkjet printed highly transparent and flexible graphene micro-supercapacitors

Journal

NANOSCALE
Volume 9, Issue 21, Pages 6998-7005

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7nr02204b

Keywords

-

Funding

  1. Swedish Research Council [2014-6160]
  2. Marie Sklodowska Curie International Career Grant (Marie Sklodowska-Curie Actions) [2015-00395, INCA 600398]
  3. Goran Gustafsson Foundation through the Young Researcher Prize [1415B]
  4. Olle Engkvist Byggmastare Foundation [2014/799]

Ask authors/readers for more resources

Modern energy storage devices for portable and wearable technologies must fulfill a number of requirements, such as small size, flexibility, thinness, reliability, transparency, manufacturing simplicity and performance, in order to be competitive in an ever expanding market. To this end, a comprehensive inkjet printing process is developed for the scalable and low-cost fabrication of transparent and flexible micro-supercapacitors. These solid-state devices, with printed thin films of graphene flakes as interdigitated electrodes, exhibit excellent performance versus transparency (ranging from a single-electrode areal capacitance of 16 mu F cm(-2) at transmittance of 90% to a capacitance of 99 mu F cm(-2) at transmittance of 71%). Also, transparent and flexible devices are fabricated, showing negligible capacitance degradation during bending. The ease of manufacturing coupled with their great capacitive properties opens up new potential applications for energy storage devices ranging from portable solar cells to wearable sensors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available