4.8 Article

An active structure preservation method for developing functional graphitic carbon dots as an effective antibacterial agent and a sensitive pH and Al(III) nanosensor

Journal

NANOSCALE
Volume 9, Issue 44, Pages 17334-17341

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7nr05539k

Keywords

-

Funding

  1. National Science Foundation of China (NSFC) [21535006]

Ask authors/readers for more resources

Functional engineering is a crucial prerequisite for specific and wide applications of optical probes. In this study, we proposed a facile active structure preservation (ASP) method to directly develop new self-functional graphitic carbon dots (g-CDs) through a hydrothermal synthesis route by taking ciprofloxacin hydrochloride, an antibiotic belonging to a group of fluoroquinolone drugs, as an example. To retain the functional structures of the starting materials, the reaction temperature is intentionally controlled below the decomposition temperature of the reactants that hold the functional groups. As a proof of concept, we successfully prepared g-CDs with ciprofloxacin-like structures on its surface, as identified by mass spectrometric (MS) analysis. The as-prepared g-CDs not only exhibit effective antibacterial activity towards the bacteria Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative), but can also optically sense pH in the range from 5.02 to 9.91. Furthermore, the g-CDs can coordinate with aluminum ions to show a chelation-enhanced photoluminescence (CHEP) effect. These results indicate that the ASP method can be promising for engineering CDs with various properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available