4.8 Article

Alloying-assisted phonon engineering of layered BiInSe3@nickel foam for efficient solar-enabled water evaporation

Journal

NANOSCALE
Volume 9, Issue 42, Pages 16396-16403

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7nr04374k

Keywords

-

Funding

  1. National Natural Science Foundation of China [91233203]
  2. State Key Laboratory of Optoelectronic Materials and Technologies

Ask authors/readers for more resources

The fresh water crisis has emerged as one of the most urgent bottlenecks hindering the rapid development of modern industry and society. Solar energy-driven water evaporation represents a potential green and sustainable solution to address this issue. Herein, for the first time, centimeter-scale BiInSe3-coated nickel foam (BiInSe3@NF) as an efficient solar-enabled evaporator was successfully achieved and exploited for solar energy-driven water evaporation. Benefitting from multiple scattering-induced light trapping of the rough substrate, strong light-matter interaction and intermediate band (IB)-induced efficient phonon emission of BiInSe3, the BiInSe3@NF device achieved a high evaporation rate of 0.83 kg m(-2) h(-1) under 1 sun irradiation, which is 2.5 times that of pure water. These figures-of-merit are superior to recently reported state-of-the-art photothermal conversion materials, such as black titania, plasmonic assembly and carbon black. In addition, superior stability over a period of 60 days was demonstrated. In summary, the current contribution depicts a facile scenario for design, production and application of an economical and efficient solar-enabled BiInSe3@NF evaporator. More importantly, the phonon engineering strategy based on alloying induced IB states can be readily applied to other analogous van der Waals materials and a series of superior vdWM alloys toward photothermal applications can be expected in the near future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available