4.8 Article

Nonlinear photoluminescence in monolayer WS2: parabolic emission and excitation fluence-dependent recombination dynamics

Journal

NANOSCALE
Volume 9, Issue 21, Pages 7235-7241

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7nr01345k

Keywords

-

Funding

  1. Joint Research Fund for Overseas Chinese, Hong Kong and Macau Scholars of the National Natural Science Foundation of China [61528403]

Ask authors/readers for more resources

Recombination dynamics during photoluminescence (PL) in two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDs) are complicated and can be easily affected by the surroundings because of their atomically thin structures. Herein, we studied the excitation power and temperature dependence of the recombination dynamics on the chemical vapor deposition-grown monolayer WS2 via a combination of Raman, PL, and time-resolved PL spectroscopies. We found a red shift and parabolic intensity increase in the PL emission of the monolayer WS2 with the increasing excitation power and the decay time constants corresponding to the recombination of trions and excitons from transient PL dynamics. We attributed the abovementioned nonlinear changes in the PL peak positions and intensities to the combination of increasing carrier interaction and band structure renormalization rather than to the thermal effect from a laser. Furthermore, the excitation power-dependent Raman measurements support our conclusion. These findings and understanding will provide important information for the development of TMD-based optoelectronics and photonics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available