4.8 Article

Alignment control and atomically-scaled heteroepitaxial interface study of GaN nanowires

Journal

NANOSCALE
Volume 9, Issue 16, Pages 5212-5221

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7nr00032d

Keywords

-

Funding

  1. Knowledge Innovation Program of Institute of Metal Research, Chinese Academy of Sciences [Y2NCA111A1, Y3NCA111A1]
  2. Youth Innovation Promotion Association, Chinese Academy of Sciences [Y4NC711171]
  3. French ANR (Agence Nationale de la Recherche) institution

Ask authors/readers for more resources

Well-aligned GaN nanowires are promising candidates for building high-performance optoelectronic nanodevices. In this work, we demonstrate the epitaxial growth of well-aligned GaN nanowires on a [0001]-oriented sapphire substrate in a simple catalyst-assisted chemical vapor deposition process and their alignment control. It is found that the ammonia flux plays a key role in dominating the initial nucleation of GaN nanocrystals and their orientation. Typically, significant improvement of the GaN nanowire alignment can be realized at a low NH3 flow rate. X-ray diffraction and cross-sectional scanning electron microscopy studies further verified the preferential orientation of GaN nanowires along the [0001] direction. The growth mechanism of GaN nanowire arrays is also well studied based on cross-sectional highresolution transmission electron microscopy (HRTEM) characterization and it is observed that GaN nanowires have good epitaxial growth on the sapphire substrate following the crystallographic relationship between (0001)(GaN)parallel to(0001)(sapphire) and (101 (1) over bar0)(GaN)parallel to(11 (2) over bar0)(sapphire). Most importantly, periodic misfit dislocations are also experimentally observed in the interface region due to the large lattice mismatch between the GaN nanowire and the sapphire substrate, and the formation of such dislocations will favor the release of structural strain in GaN nanowires. HRTEM analysis also finds the existence of type I stacking faults and voids inside the GaN nanowires. Optical investigation suggests that the GaN nanowire arrays have strong emission in the UV range, suggesting their crystalline nature and chemical purity. The achievement of aligned GaN nanowires will further promote the wide applications of GaN nanostructures toward diverse high-performance optoelectronic nanodevices including nano-LEDs, photovoltaic cells, photodetectors etc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available