4.8 Article

Dependence of gold nanoparticle radiosensitization on cell geometry

Journal

NANOSCALE
Volume 9, Issue 18, Pages 5843-5853

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7nr01024a

Keywords

-

Funding

  1. NIH/NCI [R01 CA187003, R43 CA192702]
  2. National Research Foundation of Korea (NRF) - Korean government (MSIP: Ministry of Science, ICT and Future Planning) [NRF-2013 M2B2B1075776, NRF-2013 M2B2B1075772]
  3. Office of International Affairs (OIA) at Seoul National University
  4. National Research Foundation of Korea [21A20130000016] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

The radiosensitization effect of gold nanoparticles (GNPs) has been demonstrated both in vitro and in vivo in radiation therapy. The purpose of this study was to systematically assess the biological effectiveness of GNPs distributed in the extracellular media for realistic cell geometries. TOPAS-nBio simulations were used to determine the nanometre-scale radial dose distributions around the GNPs, which were subsequently used to predict the radiation dose response of cells surrounded by GNPs. MDA-MB-231 human breast cancer cells and F-98 rat glioma cells were used as models to assess different cell geometries by changing (1) the cell shape, (2) the nucleus location within the cell, (3) the size of GNPs, and (4) the photon energy. The results show that the sensitivity enhancement ratio (SER) was increased up to a factor of 1.2 when the location of the nucleus is close to the cell membrane for elliptical-shaped cells. Heat-maps of damage-likelihoods show that most of the lethal events occur in the regions of the nuclei closest to the membrane, potentially causing highly clustered damage patterns. The effect of the GNP size on radiosensitization was limited when the GNPs were located outside the cell. The improved modelling of the cell geometry was shown to be crucial because the dose enhancement caused by GNPs falls off rapidly with distance from the GNPs. We conclude that radiosensitization can be achieved for kV photons even without cellular uptake of GNPs when the nucleus is shifted towards the cell membrane. Furthermore, damage was found to concentrate in a small region of the nucleus in close proximity to the extracellular, GNP-laden region.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available