4.8 Article

Polymer-confined growth of perforated MoSe2 single-crystals on N-doped graphene toward enhanced hydrogen evolution

Journal

NANOSCALE
Volume 9, Issue 14, Pages 4652-4659

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7nr00354d

Keywords

-

Funding

  1. Research Grant Council of Hong Kong SAR [16204815]
  2. Center for 1D/2D Quantum Materials

Ask authors/readers for more resources

The edge and corner atoms of 2D transition metal dichalcogenides (TMDCs) are the main electrocatalytically active sites for electrochemical reaction. Here, we demonstrate an approach to generate abundant edge/corner atoms in molybdenum diselenide (MoSe2) nanocrystals supported by nitrogen-doped graphene (NG) which consequently leads to significantly enhanced hydrogen evolution reaction (HER) activity. These structures were fabricated by firstly absorbing the Mo-containing precursor within polymer-functionalized graphene oxide, then selenized to obtain MoSe2 nanocrystals on the surface, and finally H-2 etching was performed to form perforated structures. The use of a functional polymer as an absorption matrix efficiently mitigates aggregation which allows us to obtain MoSe2 single-crystals of similar to 150 nm in lateral dimension, while maintaining high MoSe2 loading. We observed a remarkably enhanced electrocatalytic activity resulting from a significantly increased abundance of edge/corner atoms in hydrogen evolution measurements. Specifically, with this perforated MoSe2/NGmodified cathode, current densities of -1 and -10 mA cm(-2) were realized with the overpotentials of only 30 and 106 mV, along with a small Tafel slope of 57 mV dec(-1) and large exchange current density of 127.4 mu A cm(-2) in 0.5 M H2SO4. Such an efficient strategy also opens doors for the unparalleled design and fabrication of TMDC-based nanocomposites for electrochemical applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available