4.8 Article

Freestanding hierarchical porous carbon film derived from hybrid nanocellulose for high-power supercapacitors

Journal

NANO RESEARCH
Volume 10, Issue 5, Pages 1847-1860

Publisher

TSINGHUA UNIV PRESS
DOI: 10.1007/s12274-017-1573-8

Keywords

nanocellulose; supercapacitors; hierarchical structure; atomic layer deposition (ALD); integrated structure

Funding

  1. Canada Excellence Research Chairs Program
  2. Alberta Bio Future Research and Innovation program [BFR-16-074]

Ask authors/readers for more resources

Nanocellulose is a sustainable and eco-friendly nanomaterial derived from renewable biomass. In this study, we utilized the structural advantages of two types of nanocellulose and fabricated freestanding carbonized hybrid nanocellulose films as electrode materials for supercapacitors. The long cellulose nanofibrils (CNFs) formed a macroporous framework, and the short cellulose nanocrystals were assembled around the CNF framework and generated micro/mesopores. This two-level hierarchical porous structure was successfully preserved during carbonization because of a thin atomic layer deposited (ALD) Al2O3 conformal coating, which effectively prevented the aggregation of nanocellulose. These carbonized, partially graphitized nanocellulose fibers were interconnected, forming an integrated and highly conductive network with a large specific surface area of 1,244 m(2).g-(1). The two-level hierarchical porous structure facilitated fast ion transport in the film. When tested as an electrode material with a high mass loading of 4 mg.cm(-2) for supercapacitors, the hierarchical porous carbon film derived from hybrid nanocellulose exhibited a specific capacitance of 170 F.g(-1) and extraordinary performance at high current densities. Even at a very high current of 50 A.g(-1), it retained 65% of its original specific capacitance, which makes it a promising electrode material for high-power applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available