4.8 Article

Two-Dimensional Water-Coupled Metallic MoS2 with Nanochannels for Ultrafast Supercapacitors

Journal

NANO LETTERS
Volume 17, Issue 3, Pages 1825-1832

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.6b05134

Keywords

Metallic MoS2; nanochannels; M-MoS2-H2O system; hydrophilic; high electrical conductivity

Funding

  1. Northeastern University

Ask authors/readers for more resources

MoS2 is a promising electrode material for energy storage. However, the intrinsic multilayer pure metallic MoS2 (M-MoS2) has not been investigated for use in supercapacitors. Here, an ultrafast rate supercapacitor with extraordinary capacitance using a multilayer M-MoS2-H2O system is first investigated. Intrinsic M-MoS2 with a monolayer of water molecules covering both sides of nanosheets is obtained through a hydrothermal method with water as solvent. The super electrical conductivity of the as-prepared pure M-MoS2 is beneficial to electron transport for high power supercapacitor. Meanwhile, nanochannels between the layers of M-MoS2-H2O with a distance of similar to 1.18 nm are favorable for increasing the specific space for ion diffusion and enlarging the surface area for ion adsorption. By virtue of this, M-MoS2-H2O reaches a high capacitance of 380 F/g at a scan rate of 5 mV/s and still maintains 105 F/g at scan rate of 10 V/s. Furthermore, the specific capacitance of the symmetric supercapacitor based on M-MoS2-H2O electrodes retain a value as high as 249 F/g under 50 mV/s. These findings suggest that multilayered M-MoS2-H2O system with ion accessible large nanochannels and efficient charge transport provide an efficient energy storage strategy for ultrafast supercapacitors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available