4.8 Article

Encapsulation of Metallic Na in an Electrically Conductive Host with Porous Channels as a Highly Stable Na Metal Anode

Journal

NANO LETTERS
Volume 17, Issue 6, Pages 3792-3797

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.7b01138

Keywords

Metallic Na anode; conductive host; porous channel; low overpotential; long-term stability

Funding

  1. Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center - US Department of Energy, Office of Science, Basic Energy Sciences [DESC0001160]

Ask authors/readers for more resources

Room-temperature Na ion batteries (NIBs) have attracted great attention because of the widely available, abundant sodium resources and potentially low cost. Currently, the challenge of the NIB development is due primarily to the lack of a high-performance anode, while the Na metal anode holds great promise considering its highest specific capacity of 1165 mA h/g and lowest anodic potential. However, an uneven deposit, relatively infinite volume change, and dendritic growth upon plating/stripping cycles cause a low Coulombic efficiency, poor cycling performance, and severe safety concerns. Here, a stable Na carbonized wood (Na wood) composite anode was fabricated via a rapid melt infusion (about 5 s) into channels of carbonized wood by capillary action. The channels function as a high-surface-area, conductive, mechanically stable skeleton, which lowers the effective current density, ensures a uniform Na 'nucleation; and restricts the volume change over cycles: As a result, the Na-wood composite anode exhibited flat plating/ stripping profiles with smaller ovbrpotentials and stable cycling performance over 500 h at 1.0 mA/cm2 in a common carbonate electrolyte system. In sharp comparison, the planar Na metal electrode showed a much shorter cycle life of 100 h under the same test conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available