4.8 Article

Biologically Inspired Design of Nanoparticle Artificial Antigen-Presenting Cells for Immunomodulation

Journal

NANO LETTERS
Volume 17, Issue 11, Pages 7045-7054

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.7b03734

Keywords

Artificial antigen presenting cell; immunotherapy; nanoparticle; CD8+T cell; particle size; receptor clustering

Funding

  1. National Institutes of Health [P01-AI072677, R01-CA108835, R21-CA185819]
  2. TEDCO/Maryland Innovation Initiative
  3. NIH Cancer Nanotechnology Training Center at the Johns Hopkins Institute for NanoBioTechnology
  4. Coulter Foundation
  5. National Science Foundation Graduate Research Fellowship [DGE-1232825]
  6. ARCS foundation

Ask authors/readers for more resources

Particles engineered to engage and interact with cell surface ligands and to modulate cells can be harnessed to explore basic biological questions as well as to devise cellular therapies. Biology has inspired the design of these particles, such as artificial antigen-presenting cells (aAPCs) for use in immunotherapy. While much has been learned about mimicking antigen presenting cell biology, as we decrease the size of aAPCs to the nanometer scale, we need to extend biomimetic design to include considerations of T cell biology-including, T-cell receptor (TCR) , organization. Here we describe the first quantitative analysis of particle size effect on aAPCs with both Signals 1 and 2 based on T cell biology. We show that aAPCs, larger than 300 nm, activate T cells more efficiently than smaller aAPCs, 50 nm. The 50 nm aAPCs require saturating doses or require artificial magnetic clustering to activate T cells. Increasing ligand density alone on the 50 nm aAPCs did not increase their ability to stimulate CD8+ T cells, confirming the size-dependent phenomenon. These data support the need for multireceptor ligation and activation of T-cell receptor (TCR) nanoclusters of similar sizes to 300 nm aAPCs. Quantitative analysis and modeling of a nanoparticle system provides insight into engineering constraints of aAPCs for T cell immunotherapy applications and offers a case study for other cell-modulating particles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available