4.8 Article

Strain-Dependent Edge Structures in MoS2 Layers

Journal

NANO LETTERS
Volume 17, Issue 11, Pages 7021-7026

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.7b03627

Keywords

Transition-metal dichalcogenides; edge structures; strain; aberration-corrected transmission electron microscopy; electron energy loss spectroscopy

Funding

  1. Netherlands Organization for Scientific Research (NWO) through the Nanofront program

Ask authors/readers for more resources

Edge structures are low-dimensional defects unavoidable in layered materials of the transition metal dichalcogenides (TMD) family. Among the various types of such structures, the armchair (AC) and zigzag (ZZ) edge types are the most common. It has been predicted that the presence of intrinsic strain localized along these edges structures can have direct implications for the customization of their electronic properties. However, pinning down the relation between local structure and electronic properties at these edges is challenging. Here, we quantify the local strain field that arises at the edges of MoS2 flakes by combining aberration-corrected transmission electron microscopy (TEM) with the geometrical-phase analysis (GPA) method. We also provide further insight on the possible effects of such edge strain on the resulting electronic behavior by means of electron energy loss spectroscopy (EELS) measurements. Our results reveal that the two-dominant edge structures, ZZ and AC, induce the formation of different amounts of localized strain fields. We also show that by varying the free edge curvature from concave to convex, compressive strain turns into tensile strain. These results pave the way toward the customization of edge structures in MoS2, which can be used to engineer the properties of layered materials and thus contribute to the optimization of the next generation of atomic-scale electronic devices built upon them.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available