4.5 Article

Small Colony Variants of Pseudomonas aeruginosa Display Heterogeneity in Inhibiting Aspergillus fumigatus Biofilm

Journal

MYCOPATHOLOGIA
Volume 183, Issue 1, Pages 263-272

Publisher

SPRINGER
DOI: 10.1007/s11046-017-0186-9

Keywords

Cystic fibrosis; Aspergillus; Pseudomonas; Small colony variants; Intermicrobial inhibition

Categories

Funding

  1. Child Health Research Institute, Stanford Transdisciplinary Initiatives Program, CIMR [3777]
  2. CIMR [3770]

Ask authors/readers for more resources

Pseudomonas aeruginosa and Aspergillus fumigatus are major microbes in cystic fibrosis (CF). We reported non-mucoid P. aeruginosa isolates more inhibitory to A. fumigatus than mucoid ones. Another CF P. aeruginosa phenotype, small colony variants (SCVs), is an unknown factor in intermicrobial competition with A. fumigatus. Clinical SCV isolates and reference CF non-mucoid isolate (Pa10, producing normal-sized colonies) were compared. Live cells of P. aeruginosa or filtrates from P. aeruginosa planktonic or biofilm cultures were co-incubated with A. fumigatus growing under conditions allowing biofilm formation or with preformed biofilm. Metabolic activity of A. fumigatus biofilm was then measured. When necessary, assays were done after adjustment for growth differences by adding fresh medium to the planktonic culture filtrate. Pyoverdine determinations were performed spectrophotometrically on the planktonic culture filtrates. In all experimental conditions (live cells and planktonic or biofilm culture filtrates of P. aeruginosa versus A. fumigatus biofilm formation or preformed biofilm), three SCV isolates were less inhibitory than Pa10, two equal or more inhibitory. Adjusting planktonic culture filtrates for growth differences showed SCV inhibition differences variably related to growth or deficient inhibitor production. Studies suggested the principal P. aeruginosa inhibitor to be pyoverdine. SCV isolates appear heterogeneous in their capacity to inhibit A. fumigatus biofilm. SCV isolates can be important in the CF microbiome, because they are capable of intermicrobial inhibition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available