4.1 Article

In planta genotoxicity of nZVI: influence of colloidal stability on uptake, DNA damage, oxidative stress and cell death

Journal

MUTAGENESIS
Volume 32, Issue 3, Pages 371-387

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/mutage/gex006

Keywords

-

Funding

  1. PURSE (Promotion of University Research and Scientific Excellence) program of the Department of Science and Technology, Government of India [SR/S9/Z-23/2010/15]

Ask authors/readers for more resources

Nanoremediation of soil, ground and surface water using nanoscale zerovalent iron particles (nZVI) has facilitated their direct environmental exposure posing ecotoxicological concerns. Numerous studies elucidate their phytotoxicity in terms of growth and their fate within the plant system. However, their potential genotoxicity and cytotoxicity mechanisms are not known in plants. This study encompasses the physico-chemical characterisation of two forms of nZVI (nZVI-1 and nZVI-2) with different surface chemistries and their influence on uptake, root morphology, DNA damage, oxidative stress and cell death in Allium cepa roots after 24 h. To our knowledge, this is the first report on the cyto-genotoxicity of nZVI in plants. The adsorption of nZVI on root surfaces caused root tip, epidermal and root hair damage as assessed by Scanning Electron Microscopy. nZVI-1, due to its colloidal destabilisation (low zeta potential, conductivity and high polydispersity index), smaller size and high uptake imparted enhanced DNA damage, chromosome/nuclear aberrations (CAs/NAs) and micronuclei formation compared to nZVI-2. Although nZVI-2 exhibited high zeta potential and conductivity, its higher dissolution and substantial uptake induced genotoxicity. nZVI incited the generation of reactive oxygen species (ROS) (hydrogen peroxide, superoxide and hydroxyl radicals) leading to membrane lipid peroxidation, electrolyte leakage and mitochondrial depolarisation. The inactivation of catalase and insignificant glutathione levels marked the onset of oxidative stress. Increased superoxide dismutase and guaiacol peroxidase enzyme activities, and proline content indicated the activation of antioxidant defence machinery to alleviate ROS. Moreover, ROS-mediated apoptotic and necrotic cell death occurred in both nZVI-1 and nZVI-2-treated roots. Our results open up further possibilities in the environmental safety appraisal of bare and modified nZVI in correlation with their physico-chemical characters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available