3.8 Article

Mutation Signatures Including APOBEC in Cancer Cell Lines

Journal

JNCI CANCER SPECTRUM
Volume 2, Issue 1, Pages -

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jncics/pky002

Keywords

-

Categories

Funding

  1. NCI [R21 CA206309]
  2. National Cancer Institute (NCI) [T32 CA009138]
  3. NCI through the University of Minnesota Masonic Cancer Center [P30 CA77598]

Ask authors/readers for more resources

Background: Multiple endogenous and exogenous sources of DNA damage contribute to the overall mutation burden in cancer, with distinct and overlapping combinations contributing to each cancer type. Many mutation sources result in characteristic mutation signatures, which can be deduced from tumor genomic DNA sequences. Examples include spontaneous hydrolytic deamination of methyl-cytosine bases in CG motifs (AGEING signature) and C-to-T and C-to-G mutations in 5'-TC(A/T) motifs (APOBEC signature). Methods: The deconstructSigs R package was used to analyze single-base substitution mutation signatures in more than 1000 cancer cell lines. Two additional approaches were used to analyze the APOBEC mutation signature. Results: Most cell lines show evidence for multiple mutation signatures. For instance, the AGEING signature, which is the largest source of mutation in most primary tumors, predominates in the majority of cancer cell lines. The APOBEC mutation signature is enriched in cancer cell lines from breast, lung, head/neck, bladder, and cervical cancers, where this signature also comprises a large fraction of all mutations. Conclusions: The single-base substitution mutation signatures of cancer cell lines often reflect those of the original tumors from which they are derived. Cancer cell lines with enrichments for distinct mutation signatures such as APOBEC have the potential to become model systems for fundamental research on the underlying mechanisms and for advancing clinical strategies to exploit these processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available