4.6 Article

Alpinia calcarata: potential source for the fabrication of bioactive silver nanoparticles

Journal

NANO CONVERGENCE
Volume 5, Issue -, Pages -

Publisher

SPRINGER
DOI: 10.1186/s40580-018-0167-9

Keywords

Fabrication; Silver nanoparticles; Process optimization; Antibacterial activity; Antioxidant activity

Funding

  1. GGV VRET fellowship [145081604]

Ask authors/readers for more resources

In the present study silver nanoparticles fabricated by using leaf extract of Alpinia calcarata. We have also studied the effect of various experimental parameters viz., metal ion concentration, pH and incubation period on nanoparticle biosynthesis. Results of optimization showed that metal ion concentration of 1.5 mM, alkaline pH and incubation period of 12 h were the optimum conditions for metal nanoparticle biosynthesis. Synthesized silver nanoparticles were characterized by UV-Visible spectroscopy, Dynamic light scattering (DLS), Zeta potential analysis, Fourier transform infrared spectroscopy (FTIR), Inductively coupled plasma-optical emission spectrometry (ICP-OES), Transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD). The UV-visible spectrum shows a sharp peak at 420 nm which was due to the surface plasmon resonance of the silver nanoparticles. Effect of several phytochemicals present in A. calcarata, on synthesis of silver nanoparticles was studied by Fourier transform infrared spectroscopy. The results indicate that the flavonoids, phytosterol, quinones and phenolic compounds present in the plant extract plays a major role in formation of silver nanoparticles in their respective ions in solution. Results of TEM and XRD analysis showed that synthesized silver nanoparticles were mostly spherical in shape with an average diameter of 27.2 +/- 0.2.5 nm and highly crystalline in nature. Moreover the synthesized silver nanoparticles were also evaluated for their potential antibacterial and antioxidant activities. It showed good antibacterial activity as well as antioxidant activity. Thus the obtained result provides a scientific support that leaf extract of A. calcarata can be used efficiently in the production of potential bioactive silver nanoparticles with several pharmaceutical applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available