4.7 Article

COSMOS2015 photometric redshifts probe the impact of filaments on galaxy properties

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 474, Issue 4, Pages 5437-5458

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stx3055

Keywords

methods: numerical; methods: observational; techniques: photometric; galaxies: evolution; galaxies: formation; large-scale structure of Universe

Funding

  1. ILP LABEX [ANR-10-LABX-63, ANR-11-IDEX-0004-02]
  2. Beecroft Fellowship
  3. Oxford Martin School
  4. Science and Technology Facilities Council (STFC)
  5. French Agence Nationale de la Recherche for the project 'SAGACE'
  6. Centre National d'Etudes Spatiales (CNES)
  7. ESO Telescopes at the La Silla Paranal Observatory under ESO programme [179.A-2005]

Ask authors/readers for more resources

The variation of galaxy stellar masses and colour types with the distance to projected cosmic filaments are quantified using the precise photometric redshifts of the COSMOS2015 catalogue extracted from Cosmological Evolution Survey (COSMOS) field (2 deg(2)). Realistic mock catalogues are also extracted from the lightcone of the cosmological hydrodynamical simulation HORIZON-AGN. They show that the photometric redshift accuracy of the observed catalogue (sigma(z) < 0.015 at M-* > 10(10)M(circle dot) and z < 0.9) is sufficient to provide two-dimensional (2D) filaments that closely match their projected three-dimensional (3D) counterparts. Transverse stellar mass gradients are measured in projected slices of thickness 75 Mpc between 0.5 < z < 0.9, showing that the most massive galaxies are statistically closer to their neighbouring filament. At fixed stellar mass, passive galaxies are also found closer to their filament, while active star-forming galaxies statistically lie further away. The contributions of nodes and local density are removed from these gradients to highlight the specific role played by the geometry of the filaments. We find that the measured signal does persist after this removal, clearly demonstrating that proximity to a filament is not equivalent to proximity to an overdensity. These findings are in agreement with gradients measured in both 2D and 3D in the HORIZON-AGN simulation and those observed in the spectroscopic surveys VIPERS and GAMA (which both rely on the identification of 3D filaments). They are consistent with a picture in which the influence of the geometry of the large-scale environment drives anisotropic tides that impact the assembly history of galaxies, and hence their observed properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available