4.7 Article

The SAMI Galaxy Survey: the intrinsic shape of kinematically selected galaxies

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 472, Issue 1, Pages 966-978

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stx1869

Keywords

galaxies: fundamental parameters; galaxies: kinematics and dynamics

Funding

  1. Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) [CE110001020]
  2. ARC [FL140100278]
  3. Australian Research Council [FT140100255, FT150100333, FT140101166, FT100100457]
  4. University of Sydney
  5. NASA - Space Telescope Science Institute [HST-HF2-51377]
  6. NASA [NAS5-26555]
  7. Australian Research Council [FT100100457, FT150100333] Funding Source: Australian Research Council

Ask authors/readers for more resources

Using the stellar kinematic maps and ancillary imaging data from the Sydney AAO Multi Integral field (SAMI) Galaxy Survey, the intrinsic shape of kinematically selected samples of galaxies is inferred. We implement an efficient and optimized algorithm to fit the intrinsic shape of galaxies using an established method to simultaneously invert the distributions of apparent ellipticities and kinematic misalignments. The algorithm output compares favourably with previous studies of the intrinsic shape of galaxies based on imaging alone and our re-analysis of the ATLAS(3D) data. Our results indicate that most galaxies are oblate axisymmetric. We show empirically that the intrinsic shape of galaxies varies as a function of their rotational support as measured by the 'spin' parameter proxy lambda(Re). In particular, low-spin systems have a higher occurrence of triaxiality, while high-spin systems are more intrinsically flattened and axisymmetric. The intrinsic shape of galaxies is linked to their formation and merger histories. Galaxies with high-spin values have intrinsic shapes consistent with dissipational minor mergers, while the intrinsic shape of low-spin systems is consistent with dissipationless multimerger assembly histories. This range in assembly histories inferred from intrinsic shapes is broadly consistent with expectations from cosmological simulations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available