4.7 Article Proceedings Paper

Characterization of dust aggregates in the vicinity of the Rosetta spacecraft

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 469, Issue -, Pages S312-S320

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stx1692

Keywords

techniques: image processing; comets: general; comets: individual: 67P/Churyumov-Gerasimenko

Funding

  1. national funding agency of Germany (DLR)
  2. national funding agency of France (CNES)
  3. national funding agency of Italy (ASI)
  4. national funding agency of Spain (MEC)
  5. national funding agency of Sweden (SNSB)
  6. ESA Technical Directorate
  7. FDCT, Macau [017/2014/A1, 039/2013/A2]

Ask authors/readers for more resources

In a Rosetta/OSIRIS imaging activity in 2015 June, we have observed the dynamic motion of particles close to the spacecraft. Due to the focal setting of the OSIRIS wide angle camera, these particles were blurred, which can be used to measure their distances to the spacecraft. We detected 109 dust aggregates over a 130 min long sequence, and find that their sizes are around a millimetre and their distances cluster between 2 and 40 m from the spacecraft. Their number densities are about a factor 10 higher than expected for the overall coma and highly fluctuating. Their velocities are small compared to the spacecraft orbital motion and directed away from the spacecraft, towards the comet. From this we conclude that they have interacted with the spacecraft and assess three possible scenarios. In the likeliest of the three scenarios, centimetre-sized aggregates collide with the spacecraft and we would observe the fragments. Ablation of a dust layer on the spacecraft's z panel (remote instrument viewing direction) when rotated towards the Sun is a reasonable alternative. We could also measure an acceleration for a subset of 18 aggregates, which is directed away from the Sun and can be explain by a rocket effect, which requires a minimum ice fraction of the order of 0.1 per cent.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available