4.6 Review

Design and Experimental Evolution of trans-Splicing Group I Intron Ribozymes

Journal

MOLECULES
Volume 22, Issue 1, Pages -

Publisher

MDPI
DOI: 10.3390/molecules22010075

Keywords

ribozyme; evolution; splicing

Ask authors/readers for more resources

Group I intron ribozymes occur naturally as cis-splicing ribozymes, in the form of introns that do not require the spliceosome for their removal. Instead, they catalyze two consecutive trans-phosphorylation reactions to remove themselves from a primary transcript, and join the two flanking exons. Designed, trans-splicing variants of these ribozymes replace the 3' -portion of a substrate with the ribozyme's 3' -exon, replace the 5' - portion with the ribozyme's 5' -exon, or insert/remove an internal sequence of the substrate. Two of these designs have been evolved experimentally in cells, leading to variants of group I intron ribozymes that splice more efficiently, recruit a cellular protein to modify the substrate's gene expression, or elucidate evolutionary pathways of ribozymes in cells. Some of the artificial, trans-splicing ribozymes are promising as tools in therapy, and as model systems for RNA evolution in cells. This review provides an overview of the different types of trans-splicing group I intron ribozymes that have been generated, and the experimental evolution systems that have been used to improve them.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available