4.6 Article

Multienzyme Biosynthesis of Dihydroartemisinic Acid

Journal

MOLECULES
Volume 22, Issue 9, Pages -

Publisher

MDPI AG
DOI: 10.3390/molecules22091422

Keywords

whole cell biocatalysis; CYP71AV1; dihydroartemisinic acid

Funding

  1. Singapore-MIT Alliance Research and Technology (SMART)
  2. Biotransformation Innovation Platofrm (BioTrans)
  3. Agency for Science, Technology and Research (A* STAR)

Ask authors/readers for more resources

One-pot multienzyme biosynthesis is an attractive method for producing complex, chiral bioactive compounds. It is advantageous over step-by-step synthesis, as it simplifies the process, reduces costs and often leads to higher yield due to the synergistic effects of enzymatic reactions. In this study, dihydroartemisinic acid (DHAA) pathway enzymes were overexpressed in Saccharomyces cerevisiae, and whole-cell biotransformation of amorpha-4,11-diene (AD) to DHAA was demonstrated. The first oxidation step by cytochrome P450 (CYP71AV1) is the main rate-limiting step, and a series of N-terminal truncation and transcriptional tuning improved the enzymatic activity. With the co-expression of artemisinic aldehyde dehydrogenase (ALDH1), which recycles NADPH, a significant 8-fold enhancement of DHAA production was observed. Subsequently, abiotic conditions were optimized to further enhance the productivity of the whole-cell biocatalysts. Collectively, approximately 230 mg/L DHAA was produced by the multi-step whole-cell reaction, a similar to 50% conversion from AD. This study illustrates the feasibility of producing bioactive compounds by in vitro one-pot multienzyme reactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available