4.8 Article

A connectomic approach for subcallosal cingulate deep brain stimulation surgery: prospective targeting in treatment-resistant depression

Journal

MOLECULAR PSYCHIATRY
Volume 23, Issue 4, Pages 843-849

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/mp.2017.59

Keywords

-

Funding

  1. NIMH NIH HHS [R01 MH102238] Funding Source: Medline

Ask authors/readers for more resources

Target identification and contact selection are known contributors to variability in efficacy across different clinical indications of deep brain stimulation surgery. A retrospective analysis of responders to subcallosal cingulate deep brain stimulation (SCC DBS) for depression demonstrated the common impact of the electrical stimulation on a stereotypic connectome of converging white matter bundles (forceps minor, uncinate fasciculus, cingulum and fronto-striatal fibers). To test the utility of a prospective connectomic approach for SCC DBS surgery, this pilot study used the four-bundle tractography 'connectome blueprint' to plan surgical targeting in 11 participants with treatment-resistant depression. Before surgery, targets were selected individually using deterministic tractography. Selection of contacts for chronic stimulation was made by matching the post-operative probabilistic tractography map to the pre-surgical deterministic tractography map for each subject. Intraoperative behavioral responses were used as a secondary verification of location. A probabilistic tract map of all participants demonstrated inclusion of the four bundles as intended, matching the connectome blueprint previously defined. Eight of 11 patients (72.7%) were responders and 5 were remitters after 6 months of open-label stimulation. At one year, 9 of 11 patients (81.8%) were responders, with 6 of them in remission. These results support the utility of a group probabilistic tractography map as a connectome blueprint for individualized, patient-specific, deterministic tractography targeting, confirming retrospective findings previously published. This new method represents a connectomic approach to guide future SCC DBS studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available