4.7 Article

Impact of Polymer Type and Relative Humidity on the Long-Term Physical Stability of Amorphous Solid Dispersions

Journal

MOLECULAR PHARMACEUTICS
Volume 14, Issue 12, Pages 4374-4386

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.molpharmaceut.7b00492

Keywords

amorphous solid dispersion; polymer; thermodynamic model; phase behavior; physical stability; excipient

Funding

  1. AbbVie

Ask authors/readers for more resources

The purpose of this work is to compare the long-term physical stability of amorphous solid dispersion (ASD) formulations based on three different commercially used excipients, namely, poly(vinylpyrrolidone) K25 (PVP), poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA64), and hydroxypropyl methylcellulose acetate succinate 126G (HPMCAS), at standardized ICH storage conditions, 25 degrees C/0% relative humidity (RH), 25 degrees C/60% RH, and 40 degrees C/75% RH. Acetaminophen (APAP) and naproxen (NAP) were used as active pharmaceutical ingredients (APIs). 18 month long stability studies of these formulations were analyzed and compared with the API/polymer phase diagrams, which were modeled and predicted by applying the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) and the Gordon-Taylor or Kwei equation. The study showed that, at dry storage, the solubility of the APIs in the polymers and the kinetic stabilizing ability of the polymers increase in the following order: HPMCAS < PVPVA64 < PVP. RH significantly reduces the kinetic stabilization as well as NAP solubility in the polymers, while the impact on APAP solubility is small. The impact of RH on the stability increases with increasing hydrophilicity of the pure polymers (HPMCAS < PVPVA64 < PVP). The experimental stability results were in very good agreement with predictions confirming that PC-SAFT and the Kwei equation are suitable predictive tools for determining appropriate ASD compositions and storage conditions to ensure long-term physical stability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available