4.7 Article

Albumin Binding Domain Fusing R/K-X-X-R/K Sequence for Enhancing Tumor Delivery of Doxorubicin

Journal

MOLECULAR PHARMACEUTICS
Volume 14, Issue 11, Pages 3739-3749

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.molpharmaceut.7b00497

Keywords

albumin binding domain; RGDK; RPARPAR; doxorubicin; peptide-drug conjugate

Funding

  1. National Natural Science Foundation of China [21576267]
  2. Beijing Natural Science Foundation [2162041]
  3. National Key Laboratory of Biochemical Engineering [2014KF-05]
  4. Major State Basic Research Development Program of China [2013CB733604]

Ask authors/readers for more resources

For the purpose of improving the tumor delivery of doxorubicin (DOX), a kind of peptide-DOXO conjugate was designed and prepared, in which the peptide composed of an albumin-binding domain (ABD) and a tumor-specific internalizing sequence (RGDK or RPARPAR) was conjugated to a (6-maleimidocaproyl) hydrazone derivative of doxorubicin (DOXO-EMCH). The doxorubicin uptake by lung cancer cell line of A549 evidenced that the conjugates are capable of being internalized through a tumor-specific sequence mediated manner, and the intracellular imaging of distribution in A549 cell demonstrated that the conjugated doxorubicin can be delivered to the cell nucleus. The A549 cell cytotoxicity of peptide-DOXO conjugates was presented with IC50 values and shown in the range of about 9-11 mu M. Pharmacokinetics study revealed that both conjugates exhibited nearly 5.5 times longer half-time than DOX, and about 4 times than DOXO-EMCH. The in vivo growth inhibitions of the two peptide-DOXO conjugates on BALB/c nude mice bearing A549 tumor (47.78% for ABD-RGDK-DOXO and 47.09% for ABD-RPARPAR-DOXO) were much stronger than that of doxorubicin and DOXO-EMCH (24.28% and 25.67% respectively) at a doxorubicin equivalent dose. Besides, the in vivo fluorescence imaging study confirmed that the peptide markedly increased the payload accumulation in tumor tissues and indicated that albumin binding domain fusing tumor-specific sequence effectively enhanced the tumor delivery of doxorubicin and thus improved its therapeutic potency.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available