4.6 Article

Porous tremella-like MoS2/polyaniline hybrid composite with enhanced performance for lithium-ion battery anodes

Journal

ELECTROCHIMICA ACTA
Volume 167, Issue -, Pages 132-138

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2015.03.151

Keywords

MoS2; Polyaniline; Lithium-ion batteries; Anode

Funding

  1. National Natural Science Foundation of China [51272217, 51302238]
  2. Guangdong Innovative and Entrepreneurial Research Team Program [2013C090]
  3. Shenzhen Municipality Project [JCYJ20140417113430618]
  4. Huawei Collaboration Project [YB2012090343]

Ask authors/readers for more resources

Molybdenum disulfide (MoS2) is one of the most attractive anode materials for lithium-ion batteries (LIBs) due to its high theoretical specific capacity, but its poor cyclic stability need further optimization for its practical application. In this study, porous MoS2/polyaniline (MoS2/PANI) composite with a tremella-like hierarchical structure was synthesized via a facile polymerization and hydrothermal method. The homogeneously distributed PANI can not only improve the conductivity of MoS2, but also rebuild a hierarchical porous structure thus enhance rapid Li+ transport during the Li+ insertion/extraction reaction. As an anode material of LIBs, this composite exhibits a high initial reversible capacity of 910 mAh/g with an initial Coulombic efficiency of similar to 80% at 0.1 A/g. Even at a high current density of 4 A/g, the reversible capacity of the MoS2/PANI composite still remains at 369 mAh/g. Moreover, this composite retains an impressive high capacity of 915 mAh/g after 200 cycles at a high current density of 1 A/g, demonstrating its potential for applications in LIBs. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available