4.6 Article

Role of 3-Acetyl-11-Keto-Beta-Boswellic Acid in Counteracting LPS-Induced Neuroinflammation via Modulation of miRNA-155

Journal

MOLECULAR NEUROBIOLOGY
Volume 55, Issue 7, Pages 5798-5808

Publisher

SPRINGER
DOI: 10.1007/s12035-017-0801-2

Keywords

LPS; AKBA; DEX; Molecular markers; Inflammatory markers

Categories

Funding

  1. Centre for Special Studies and Programs (CSSP), Bibliotheca Alexandrina [145]
  2. DAAD [134.104401.347, ga43213]

Ask authors/readers for more resources

Neuroinflammation is one of the most important mechanisms underlying neurodegeneration. Lipopolysaccharide (LPS) is a potent inflammogen which causes cognitive dysfunction. Boswellia serrata is known since many years as a powerful anti-inflammatory herbal drug. Its beneficial effect mainly arises from inhibition of 5-lipoxygenase (5-LO) enzyme. 3-acetyl-11-keto-beta-boswellic acid (AKBA) is the most potent 5-LO inhibitor extracted from the oleo-gum-resin of Boswellia serrata. The aim of the present work is to study the molecular mechanisms underlying the anti-inflammatory and neuroprotective effects of AKBA and dexamethasone (DEX) in LPS-induced neuroinflammatory model. A single intraperitoneal (i.p.) dose of LPS (0.8 mg/kg) was injected to induce cognitive dysfunction. The LPS-treated mice were administered for 7 days with either AKBA or DEX at intraperitoneal doses of 5 and 1 mg/kg, respectively. Cognitive, locomotor functions, and anxiety level were first examined. The level of the phosphorylated inhibitory protein for NF-kappa B, I kappa B-alpha (P-I kappa B-alpha), was measured, and the expression levels of the inflammatory microRNA-155 (miR-155) and its target gene, suppressor of cytokine signaling-1 (SOCS-1), were determined in the brain. Moreover, the level of carbonyl proteins as a measure of oxidative stress and several cytokines as well as markers for apoptosis and amyloidogenesis was detected. Results showed that AKBA and DEX reversed the behavioral dysfunction induced by LPS. AKBA decreased P-I kappa B-alpha, miRNA-155 expression level, and carbonyl protein content. It restored normal cytokine level and increased SOCS-1 expression level. It also showed anti-apoptotic and anti-amyloidogenic effects in LPS-injected mice. These findings suggest AKBA as a therapeutic drug for alleviating the symptoms of neuroinflammatory disorders.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available