4.5 Article

O-GlcNAcylation promotes migration and invasion in human ovarian cancer cells via the RhoA/ROCK/MLC pathway

Journal

MOLECULAR MEDICINE REPORTS
Volume 15, Issue 4, Pages 2083-2089

Publisher

SPANDIDOS PUBL LTD
DOI: 10.3892/mmr.2017.6244

Keywords

ovarian cancer; O-GlcNAcylation; migration; invasion; RhoA/ROCK/MLC

Ask authors/readers for more resources

O-GlcNAcylation is a dynamic and reversible post-translational modification associated with the regulation of multiple cellular functions. The addition and removal of O-Linked beta-N-acetylglucosamine (O-GlcNAc) on target proteins is catalyzed by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Accumulating evidence suggests that O-GlcNAcylation is associated with the malignancy of several types of human cancer. To investigate the effect of O-GlcNAcylation on ovarian cancer phenotypes, global O-GlcNAc levels were decreased by OGT silencing through RNA interference and increased by inhibiting OGA activity with Thiamet-G. Transwell assay results demonstrated that OGT silencing inhibited the migration and invasion of SKOV3 and 59M ovarian cells invitro, while Thiamet-G treatment promoted migration and invasion. Furthermore, a pull-down assay and western blot analysis demonstrated that Thiamet-G treatment enhanced RhoA activity and the phosphorylation of the Rho-associated protein kinase (ROCK) substrate, myosin light chain (MLC), while OGT silencing attenuated RhoA activity and MLC phosphorylation. In addition, RhoA silencing via RNA interference and inhibition of ROCK activity with Y-27632 prevented Thiamet-G-induced increases in cell migration and invasion. These data suggest that O-GlcNAcylation augments the motility of ovarian cancer cells via the RhoA/ROCK/MLC signaling pathway. Therefore, O-GlcNAcylation may be a potential target for the diagnosis and treatment of ovarian cancer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available