4.0 Article

Central Hypothyroidism and Novel Clinical Phenotypes in Hemizygous Truncation of TBL1X

Journal

JOURNAL OF THE ENDOCRINE SOCIETY
Volume 3, Issue 1, Pages 119-128

Publisher

ENDOCRINE SOC
DOI: 10.1210/js.2018-00144

Keywords

central hypothyroidism; attention deficit hyperactivity disorder; Chiari malformation type I; 22 hearing loss; TBL1X gene

Funding

  1. Madrid Autonomous Region [ENDOSCREEN S2010/BMD-2396]
  2. European Regional Development Fund

Ask authors/readers for more resources

Transducin beta-like 1 X-linked (TBL1X) gene encodes a subunit of the nuclear corepressor-silencingmediator for retinoid and thyroid hormone receptor complex (NCoR-SMRT) involved in repression of thyroid hormone action in the pituitary and hypothalamus. TBL1X defects were recently associated with central hypothyroidism and hearing loss. The current study aims to describe the clinical and genetic characterization of a male diagnosed with central hypothyroidism through thyroid hormone profiling, TRH test, brain MRI, audiometry, and psychological evaluation. Next-generation sequencing of known genes involved in thyroid disorders was implemented. The 6-year-old boy was diagnosed with central hypothyroidism [free T4: 10.42 pmol/L (normal: 12 to 22 pmol/L); TSH: 1.57 mIU/L (normal: 0.7 to 5.7 mIU/L)], with a mildly reduced TSH response to TRH. He was further diagnosed with attention-deficit/hyperactivity disorder (ADHD) at 7 years, alternating episodes of encopresis and constipation, and frequent headaches. MRI showed a normal pituitary but detected a Chiari malformation type I (CMI). At 10 years, audiometry identified poor hearing threshold at high frequencies. Sequencing revealed a nonsense hemizygous mutation in TBL1X [c. 1015C > T; p.(Arg339Ter)] largely truncating its WD-40 repeat domain involved in nuclear protein-protein interactions. In conclusion, to our knowledge, we identified the first severely truncating TBL1X mutation in a patient with central hypothyroidism, hypoacusia, and novel clinical features like ADHD, gastrointestinal dysmotility, and CMI. Given the relevance of TBL1X and NCoR-SMRT for the regulation of transcriptional programs at different tissues (pituitary, cochlea, brain, fossa posterior, and cerebellum), severe mutations in TBL1X may lead to a distinct syndrome with a phenotypic spectrum wider than previously reported. Copyright (C) 2019 Endocrine Society

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available