4.7 Article

A combination of sexual and ecological divergence contributes to rearrangement spread during initial stages of speciation

Journal

MOLECULAR ECOLOGY
Volume 26, Issue 8, Pages 2331-2347

Publisher

WILEY
DOI: 10.1111/mec.14036

Keywords

assortative mating; chromosomal rearrangements; ecological speciation; inversions; pheromone; reproductive isolation

Funding

  1. National Science Foundation [DEB-1257251, DEB-1256688]
  2. United State Department of Agriculture (USDA) National Institute of Food and Agriculture [AFRI 2010-65106-20610]
  3. United State Agricultural Food and Research Initiative [AFRI 2010-65106-20610]
  4. USDA
  5. USDA and Agricultural Research Service (ARS) (CRIS Project) [3625-22000-017-00]
  6. Iowa Agriculture and Home Economics Experiment Station, Ames, IA [3543]
  7. National Institute of Food and Agriculture, Biotechnology Risk Assessment Grant (NIFA-BRAG) [2010-33522-21673]
  8. Tufts University Summer Scholars programme
  9. National Science Foundation Graduate Research Fellowship [2011-116050]
  10. Division Of Environmental Biology
  11. Direct For Biological Sciences [1257251] Funding Source: National Science Foundation

Ask authors/readers for more resources

Chromosomal rearrangements between sympatric species often contain multiple loci contributing to assortative mating, local adaptation and hybrid sterility. When and how these associations arise during the process of speciation remains a subject of debate. Here, we address the relative roles of local adaptation and assortative mating on the dynamics of rearrangement evolution by studying how a rearrangement co-varies with sexual and ecological trait divergence within a species. Previously, a chromosomal rearrangement that suppresses recombination on the Z (sex) chromosome was identified in European corn borer moths (Ostrinia nubilalis). We further characterize this recombination suppressor and explore its association with variation in sex pheromone communication and seasonal ecological adaptation in pairs of populations that are divergent in one or both of these characteristics. Direct estimates of recombination suppression in pedigree mapping families indicated that more than 39% of the Z chromosome (encompassing up to similar to 10 megabases and similar to 300 genes) resides within a non-recombining unit, including pheromone olfactory receptor genes and a major quantitative trait locus that contributes to ecotype differences (Pdd). Combining direct and indirect estimates of recombination suppression, we found that the rearrangement was occasionally present between sexually isolated strains (E vs. Z) and between divergent ecotypes (univoltine vs. bivoltine). However, it was only consistently present when populations differed in both sexual and ecological traits. Our results suggest that independent of the forces that drove the initial establishment of the rearrangement, a combination of sexual and ecological divergence is required for rearrangement spread during speciation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available