4.8 Article

Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity

Journal

ENERGY & ENVIRONMENTAL SCIENCE
Volume 12, Issue 2, Pages 582-588

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8ee03287d

Keywords

-

Funding

  1. Engineering and Physical Sciences Research Council [EP/L017563/1]
  2. EPSRC [EP/L017563/1, EP/N010493/1, EP/P025021/1, EP/S019367/1] Funding Source: UKRI

Ask authors/readers for more resources

Ultrahigh discharge energy density (W-dis = 10.5 J cm(-3)) and efficiency ( = 87%) have been obtained in doped BiFeO3-BaTiO3 ceramic multilayers by achieving an electrically rather than chemically homogeneous microstructure. Back scattered scanning and transmission electron microscopy combined with energy dispersive X-ray spectroscopy mapping of (0.7 - x)BiFeO3-0.3BaTiO(3)-xNd(Zn0.5Zr0.5)O-3 (0.05 x 0.10) ceramics revealed a core-shell grain structure which switched from a bright to dark contrast as x increased. Compositions with x = 0.08 were at the point of cross over between these two manifestations of core-shell contrast. Dielectric measurements together with the absence of macrodomains in diffraction contrast TEM images suggested that compositions with x = 0.08 exhibited relaxor behaviour within both the core and shell regions. Impedance spectroscopy demonstrated that, despite being chemical dissimilar, the grains were electrically homogeneous and insulating with little evidence of conductive cores. Multilayers of x = 0.08 had enhanced breakdown strength, E-BDS > 700 kV cm(-1) and a slim hysteresis loop which resulted in large W-dis and high which were temperature stable to <15% from 25 to 150 degrees C.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available