4.7 Article

Interface-Enabled Ion Conduction in Li10GeP2S12-Poly(ethylene Oxide) Hybrid Electrolytes

Journal

ACS APPLIED ENERGY MATERIALS
Volume 2, Issue 2, Pages 1452-1459

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsaem.8b02008

Keywords

interface chemistry; hybrid electrolytes; fast ion conduction; tracer-exchange NMR

Funding

  1. National Science Foundation [DMR-1808517, DMR-1644779]
  2. Marion Milligan Mason Award, AAAS
  3. State of Florida

Ask authors/readers for more resources

Organic-inorganic hybrid solid electrolytes are expected to integrate the merits of both moieties for addressing the challenges in achieving fast ion conduction and high stability for energy storage applications. Li10GeP2S12 (LGPS)-poly-(ethylene oxide) (PEO) (bis(trifluoromethane)sulfonimide lithium (LiTFSI)) hybrid electrolytes have been prepared, which exhibit ionic conductivities up to 0.22 mS cm(-1) and good long-term cycling stability against Li-metal. High-resolution solid-state Li-6 NMR is employed to examine the local structural enviornments of Li ions in the LGPS-PEO (LiTFSI) hybrids, which identifies Li ions from PEO (LiTFSI), in bulk LGPS, and at LGPS-PEO interfaces. Tracer-exchange Li NMR reveals that Li ions transport mainly through LGPS-PEO interfaces. The impact of LGPS and LiTFSI contents on the interface chemistry within LGPS-PEO hybrid electrolytes has been examined. The measured conductivities of LGPS-PEO hybrids positively correlate with the available Li ions at LGPS-PEO interfaces. This study provides insights for engineering interfaces in organic-inorganic hybrids to develop high-performance electrolytes for solid-state rechargeable batteries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available