4.6 Article

Atmospheric Dynamics and the Variable Transit of KELT-9 b

Journal

ASTRONOMICAL JOURNAL
Volume 157, Issue 2, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.3847/1538-3881/aaf725

Keywords

planets and satellites: atmospheres; planets and satellites: composition; stars: flare

Funding

  1. NASA Origins of the Solar System [NNX13AH79G]
  2. German Federal Ministry (BMBF) [05AL2BA1/3, 05A08BAC]
  3. National Science Foundation [AST-1313268]
  4. NASA Exoplanet Research Program [14-XRP14-2-0090]

Ask authors/readers for more resources

We present a spectrally and temporally resolved detection of the optical Mg I triplet at 7.8 sigma in the extended atmosphere of the ultra-hot Jupiter KELT-9 b, adding to the list of detected metal species in the hottest gas giant currently known. Constraints are placed on the density and radial extent of the excited hydrogen envelope using simultaneous observations of Ha and H beta under the assumption of a spherically symmetric atmosphere. We find that planetary rotational broadening of v(rot) = 8.21(-0.7)(+0.6) km s(-1) is necessary to reproduce the Balmer line transmission profile shapes, where the model including rotation is strongly preferred over the non-rotating model using a Bayesian information criterion comparison. The time series of both metal line and hydrogen absorption show remarkable structure, suggesting that the atmosphere observed during this transit is dynamic rather than static. We detect a relative emission feature near the end of the transit which exhibits a P-Cygni-like shape, evidence of material moving at approximate to 50-100 km s(-1) away from the planet. We hypothesize that the in-transit variability and subsequent P-Cygni-like profiles are due to a flaring event that caused the atmosphere to expand, resulting in unbound material being accelerated to high speeds by stellar radiation pressure. Further spectroscopic transit observations will help establish the frequency of such events.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available