4.6 Article

Resveratrol inhibits obesity-associated adipose tissue dysfunction and tumor growth in a mouse model of postmenopausal claudin-low breast cancer

Journal

MOLECULAR CARCINOGENESIS
Volume 57, Issue 3, Pages 393-407

Publisher

WILEY
DOI: 10.1002/mc.22763

Keywords

diet-induced obesity; mammary tumor; resveratrol

Funding

  1. American Institute for Cancer Research [8A049]
  2. Breast Cancer Research Foundation [R35 CA197627]
  3. National Cancer Institute/NIH [R25CA057726]

Ask authors/readers for more resources

Adipose tissue dysregulation, a hallmark of obesity, contributes to a chronic state of low-grade inflammation and is associated with increased risk and progression of several breast cancer subtypes, including claudin-low breast tumors. Unfortunately, mechanistic targets for breaking the links between obesity-associated adipose tissue dysfunction, inflammation, and claudin-low breast cancer growth have not been elucidated. Ovariectomized female C57BL/6 mice were randomized (n=15/group) to receive a control diet, a diet-induced obesity (DIO) diet, or a DIO+resveratrol (0.5% wt/wt) diet. Mice consumed these diets ad libitum throughout study and after 6 weeks were orthotopically injected with M-Wnt murine mammary tumor cells, a model of estrogen receptor (ER)-negative claudin-low breast cancer. Compared with controls, DIO mice displayed adipose dysregulation and metabolic perturbations including increased mammary adipocyte size, cyclooxygenase-2 (COX-2) expression, inflammatory eicosanoid levels, macrophage infiltration, and prevalence of crown-like structures (CLS). DIO mice (relative to controls) also had increased systemic inflammatory cytokines and decreased adipocyte expression of peroxisome proliferator-activated receptor gamma (PPAR) and other adipogenesis-regulating genes. Supplementing the DIO diet with resveratrol prevented obesity-associated increases in mammary tumor growth, mammary adipocyte hypertrophy, COX-2 expression, macrophage infiltration, CLS prevalence, and serum cytokines. Resveratrol also offset the obesity-associated downregulation of adipocyte PPAR and other adipogenesis genes in DIO mice. Our findings suggest that resveratrol may inhibit obesity-associated inflammation and claudin-low breast cancer growth by inhibiting adipocyte hypertrophy and associated adipose tissue dysregulation that typically accompanies obesity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available