4.6 Article

Tumor-targeted Nanoparticle Delivery of HuR siRNA Inhibits Lung Tumor Growth In Vitro and In Vivo By Disrupting the Oncogenic Activity of the RNA-binding Protein HuR

Journal

MOLECULAR CANCER THERAPEUTICS
Volume 16, Issue 8, Pages 1470-1486

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1535-7163.MCT-17-0134

Keywords

-

Categories

Funding

  1. NIH [R01 CA167516]
  2. Institutional Development Award (IDeA) from National Institute of General Medical Sciences of the NIH [P20 GM103639]
  3. Presbyterian Health Foundation [C5094701, C5095801]
  4. Presbyterian Health Foundation Bridge Grant [C5098101]
  5. Stephenson Cancer Center
  6. Jim and Christy Everest Endowed Chair in Cancer Developmental Therapeutics
  7. University of Oklahoma Health Sciences Center

Ask authors/readers for more resources

Selective downregulation of the human antigen R (HuR) protein by siRNA may provide a powerful approach for treating lung cancer. To this end, we investigated the efficacy of transferrin receptor-targeted liposomal nanoparticle-based HuR siRNA (HuR-TfNP) therapy and compared with control siRNA (C)-TfNP therapy both, in vitro and in vivo using lung cancer models. In vitro studies showed HuR-TfNP, but not C-TfNP, efficiently down-regulated HuR and HuR-regulated proteins in A549, and HCC827 lung cancer cells, resulting in reduced cell viability, inhibition of cell migration and invasion, and induction of G1 cell-cycle arrest culminating in apoptosis. However, HuR-TfNP activity in normal MRC-9 lung fibroblasts was negligible. In vivo biodistribution study demonstrated that fluorescently labeled HuR-siRNA or ICG dye-loaded TfNP localized in tumor tissues. Efficacy studies showed intratumoral or intravenous administration of HuR-TfNP significantly inhibited A549 (>55% inhibition) and HCC827 (>45% inhibition) subcutaneous tumor growth compared with C-TfNP. Furthermore, HuR-TfNP treatment reduced HuR, Ki67, and CD31 expression and increased caspase-9 and PARP cleavage and TUNEL-positive staining indicative of apoptotic cell death in tumor tissues compared with C-TfNP treatment. The antitumor activity of HuR-TfNP was also observed in an A549-luc lung metastatic model, as significantly fewer tumor nodules (9.5 +/- 3.1; P < 0.001; 88% inhibition) were observed in HuR-TfNP-treated group compared with the C-TfNP-treated group (77.7 +/- 20.1). Significant reduction in HuR, Ki67, and CD31 expression was also observed in the tumor tissues of HuR-TfNP-treatment compared with C-TfNP treatment. Our findings highlight HuR-TfNP as a promising nanotherapeutic system for lung cancer treatment. (C)2017 AACR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available