4.6 Article

Pharmacological Dual Inhibition of Tumor and Tumor-Induced Functional Limitations in a Transgenic Model of Breast Cancer

Journal

MOLECULAR CANCER THERAPEUTICS
Volume 16, Issue 12, Pages 2747-2758

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1535-7163.MCT-17-0717

Keywords

-

Categories

Funding

  1. Department of Veterans Affairs [BX002764]
  2. Vera Bradley Foundation for Breast Cancer Research

Ask authors/readers for more resources

Breast cancer progression is associated with systemic effects, including functional limitations and sarcopenia without the appearance of overt cachexia. Autocrine/paracrine actions of cytokines/chemokines produced by cancer cells mediate cancer progression and functional limitations. The cytokine-inducible transcription factor NF-kappa B could be central to this process, as it displays oncogenic functions and is integral to the Pax7: MyoD: Pgc-1 beta: miR-486 myogenesis axis. We tested this possibility using the MMTV-PyMT transgenic mammary tumor model and the NF-kB inhibitor dimethylaminoparthenolide (DMAPT). We observed deteriorating physical and functional conditions in PyMT+ mice with disease progression. Compared with wild-type mice, tumor-bearing PyMT+ mice showed decreased fat mass, impaired rotarod performance, and reduced grip strength as well as increased extracellular matrix (ECM) deposition in muscle. Contrary to acute cachexia models described in the literature, mammary tumor progression was associated with reduction in skeletal muscle stem/satellite-specific transcription factor Pax7. Additionally, we observed tumor-induced reduction in Pgc-1 beta in muscle, which controls mitochondrial biogenesis. DMAPT treatment starting at 6 to 8 weeks age prior to mammary tumor occurrence delayed mammary tumor onset and tumor growth rates without affecting metastasis. DMAPT overcame cancer-induced functional limitations and improved survival, which was accompanied with restoration of Pax7, Pgc-1 beta, and mitochondria levels and reduced ECM levels in skeletal muscles. In addition, DMAPT restored circulating levels of 6 out of 13 cancer-associated cytokines/chemokines changes to levels seen in healthy animals. These results reveal a pharmacological approach for overcoming cancer-induced functional limitations, and the above-noted cancer/drug-induced changes in muscle gene expression could be utilized as biomarkers of functional limitations. (C) 2017 AACR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available