4.1 Article

Optimal parameter values for the control of gene regulation

Journal

MOLECULAR BIOSYSTEMS
Volume 13, Issue 4, Pages 796-803

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6mb00765a

Keywords

-

Funding

  1. Department of Science and Technology (DST), Government of India

Ask authors/readers for more resources

How does a transcription network arrive at the particular values of biochemical interactions defining it? These interactions define DNA-transcription factor interaction, degradation rates of proteins, promoter strengths, and communication of the environmental signal with the network. What is the structure of the fitness landscape that is defined by the space that these parameters can take on? To answer these questions, we simulate the simplest regulatory network: a transcription factor, R, and a target protein, T. We use a cost-benefit analysis to evolve the network and eventually arrive at values of parameters which maximize fitness. We show that for a given topology, multiple parameter sets exist which confer maximal fitness to the cell, and that pairwise correlations exist between parameters in optimal sets. In addition, our results indicate that in the parameter space defining the interactions in a topology, a highly rugged fitness landscape exists.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available