4.8 Article

Patterns of Polymorphism at the Self-Incompatibility Locus in 1,083 Arabidopsis thaliana Genomes

Journal

MOLECULAR BIOLOGY AND EVOLUTION
Volume 34, Issue 8, Pages 1878-1889

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/molbev/msx122

Keywords

evolution of selfing; Arabidopsis; 1001 genomes project; self-incompatibility; evolutionary transition

Funding

  1. CNRS
  2. EMBO
  3. JSPS
  4. JSPS KAKENHI [15K18583]
  5. Fulbright fellowship
  6. French Ministere de l'Enseignement Superieur et de la Recherche
  7. Hauts de France Region
  8. European Funds for Regional Economical Development
  9. ERC [268962]
  10. French Agence Nationale de la Recherche [ANR-11-BSV7-013-03, ANR-11-JSV7-008-01]
  11. European Research Council [648321]
  12. [13]
  13. Grants-in-Aid for Scientific Research [17K15165, 15K18583] Funding Source: KAKEN
  14. European Research Council (ERC) [268962] Funding Source: European Research Council (ERC)

Ask authors/readers for more resources

Although the transition to selfing in the model plant Arabidopsis thaliana involved the loss of the self-incompatibility (SI) system, it clearly did not occur due to the fixation of a single inactivating mutation at the locus determining the specificities of SI (the S-locus). At least three groups of divergent haplotypes (haplogroups), corresponding to ancient functional S-alleles, have been maintained at this locus, and extensive functional studies have shown that all three carry distinct inactivating mutations. However, the historical process of loss of SI is not well understood, in particular its relation with the last glaciation. Here, we took advantage of recently published genomic resequencing data in 1,083 Arabidopsis thaliana accessions that we combined with BAC sequencing to obtain polymorphism information for the whole S-locus region at a species-wide scale. The accessions differed by several major rearrangements including large deletions and interhaplogroup recombinations, forming a set of haplogroups that are widely distributed throughout the native range and largely overlap geographically. Relict A. thaliana accessions that directly derive from glacial refugia are polymorphic at the S-locus, suggesting that the three haplogroups were already present when glacial refugia from the last Ice Age became isolated. Interhaplogroup recombinant haplotypes were highly frequent, and detailed analysis of recombination breakpoints suggested multiple independent origins. These findings suggest that the complete loss of SI in A. thaliana involved independent self-compatible mutants that arose prior to the last Ice Age, and experienced further rearrangements during postglacial colonization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available