4.6 Article

Shepherding in a Self-gravitating Disk of Trans-Neptunian Objects

Journal

ASTRONOMICAL JOURNAL
Volume 157, Issue 2, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.3847/1538-3881/aaf0fc

Keywords

celestial mechanics; Kuiper belt: general; planets and satellites: dynamical evolution and stability

Funding

  1. Gates Cambridge Trust [OPP1144]
  2. Bill & Melinda Gates Foundation

Ask authors/readers for more resources

A relatively massive and moderately eccentric disk of trans-Neptunian objects (TNOs) can effectively counteract apse precession induced by the outer planets, and in the process shepherd highly eccentric members of its population into nearly stationary configurations that are antialigned with the disk itself. We were sufficiently intrigued by this remarkable feature to embark on an extensive exploration of the full spatial dynamics sustained by the combined action of giant planets and a massive trans-Neptunian debris disk. In the process, we identified ranges of disk mass, eccentricity, and precession rate that allow apse-clustered populations that faithfully reproduce key orbital properties of the much-discussed TNO population. The shepherding disk hypothesis is, to be sure, complementary to any potential ninth member of the solar system pantheon, and could obviate the need for it altogether. We discuss its essential ingredients in the context of solar system formation and evolution, and argue for their naturalness in view of the growing body of observational and theoretical knowledge about self-gravitating disks around massive bodies, extra-solar debris disks included.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available