4.8 Article

Single Cell Transcriptomics, Mega-Phylogeny, and the Genetic Basis of Morphological Innovations in Rhizaria

Journal

MOLECULAR BIOLOGY AND EVOLUTION
Volume 34, Issue 7, Pages 1557-1573

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/molbev/msx075

Keywords

cytoskeleton; phylogeny; protists; Radiolaria; Rhizaria; SAR; single-cell transcriptomics

Funding

  1. University of Oslo
  2. Research Council of Norway [NFR216475]

Ask authors/readers for more resources

The innovation of the eukaryote cytoskeleton enabled phagocytosis, intracellular transport, and cytokinesis, and is largely responsible for the diversity of morphologies among eukaryotes. Still, the relationship between phenotypic innovations in the cytoskeleton and their underlying genotype is poorly understood. To explore the genetic mechanism of morphological evolution of the eukaryotic cytoskeleton, we provide the first single cell transcriptomes from uncultured, free-living unicellular eukaryotes: the polycystine radiolarian Lithomelissa setosa (Nassellaria) and Sticholonche zanclea (Taxopodida). A phylogenomic approach using 255 genes finds Radiolaria and Foraminifera as separate monophyletic groups (together as Retaria), while Cercozoa is shown to be paraphyletic where Endomyxa is sister to Retaria. Analysis of the genetic components of the cytoskeleton and mapping of the evolution of these on the revised phylogeny of Rhizaria reveal lineage-specific gene duplications and neofunctionalization of alpha and beta tubulin in Retaria, actin in Retaria and Endomyxa, and Arp2/3 complex genes in Chlorarachniophyta. We show how genetic innovations have shaped cytoskeletal structures in Rhizaria, and how single cell transcriptomics can be applied for resolving deep phylogenies and studying gene evolution in uncultured protist species.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available