4.6 Article

Super-resolving the Ising model with convolutional neural networks

Journal

PHYSICAL REVIEW B
Volume 99, Issue 7, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.99.075113

Keywords

-

Funding

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. Canada Research Chair program
  3. Perimeter Institute for Theoretical Physics
  4. NVIDIA Corporation
  5. Government of Canada through Industry Canada
  6. Province of Ontario through the Ministry of Research Innovation

Ask authors/readers for more resources

Machine learning is becoming widely used in condensed matter physics. Inspired by the concept of image super-resolution, we propose a method to increase the size of lattice spin configurations using deep convolutional neural networks. Through supervised learning on Monte Carlo (MC) generated spin configurations, we train networks that invert real-space renormalization decimations. We demonstrate that super-resolution can reproduce thermodynamic observables that agree with MC calculations for the one- and two-dimensional Ising model at various temperatures. We find that it is possible to predict thermodynamic quantities for lattice sizes larger than those used in training by extrapolating the parameters of the network. We use this method to compute the critical exponents of the 2D Ising model, finding good agreement with theory.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available