4.5 Article

Thyroid hormone transport across L-type. amino acid transporters: What can molecular modelling tell us?

Journal

MOLECULAR AND CELLULAR ENDOCRINOLOGY
Volume 458, Issue C, Pages 68-75

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.mce.2017.03.018

Keywords

Homology modelling of transporter proteins; Structure-function analysis; Transport assays; Thyroid hormone uptake and efflux; SLC7; SLC43

Ask authors/readers for more resources

Thyroid hormones (THs) and their derivatives require transmembrane transporters (TTs) to mediate their translocation across the cell membrane. Among these TTs, the L-type amino acid transporters (LAT) not only transport amino acids (AAs) but also certain THs and their derivatives. This review summarizes available knowledge concerning structure function patterns of the TH transport by LAT1 and LAT2. For example, LAT2 imports 3,3'-T-2 and T-3, but not rT(3) and T-4. In contrast to amino acids, THs are not at all exported by LAT2. Homology modelling of LAT1 and LAT2 is based on available crystal structures from the same superfamily the amino acid/polyamine/organocation transporter (APC). Molecular model guided mutagenesis has been used to predict substrate interaction sites. A common recognition feature for amino acid- and TH-derivatives has been suggested in an interior cavity of LAT1 and LAT2. Therein additional distinct molecular determinants that are responsible for the bidirectional AA transport but allowing only unidirectional import of particular THs have been confirmed for LAT2 by mutagenesis. Characterized substrate features that are needed for TH translocation and distinct LAT2 properties will be highlighted to understand the molecular import and export mechanisms of this transporter in more detail. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available