4.6 Article

The influence of Ferric ion contamination on the solid polymer electrolyte water electrolysis performance

Journal

ELECTROCHIMICA ACTA
Volume 158, Issue -, Pages 253-257

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2015.01.140

Keywords

Solid polymer electrolyte water electrolysis; Ferric ion impurity; In-situ; Valence alternation

Funding

  1. National High Technology Research and Development Program of China (863 Program) [2013AA110201]
  2. National Natural Science Foundations of China [21203191, 21306190]

Ask authors/readers for more resources

Fe3+ is a sort of common metal ion contaminant for the solid polymer electrolyte (SPE) water electrolyser. In this paper, the effect of Fe3+ on the performance of SPE water electrolyser has been investigated by both in-situ and ex-situ characterizations. The electron probe microanalysis and ultraviolet test results showed that Fe3+ could migrate from the anode to the cathode and mostly be reduced to Fe2+ in the cathode rather than occurred underpotential deposition as described in the previous report. The in-situ dynamic contamination test showed that the anode voltage increased sharply as soon as the Fe3+ was fed into the anode, while the cathode voltage kept constant until the contamination time was over 30 minutes, indicating the higher tolerance of the cathode than the anode for the Fe3+ contamination. The calculation results based on the electrochemistry impedance spectroscopy test results revealed that the striking increase of the electrolysis voltage was mainly attributed to the ohmic overpotential, which was due to the replacement of H+ by Fe3+ in the Nafion resin. Interestingly, the voltage lagged behind the current for several minutes in the multi-current- step test for the contaminated electrolyser, which phenomenon may be used for judging whether the SPE water electrolyser performance degradation is due to the metal ions contamination. Furthermore, recovery strategy has been developed, and it was found that the contaminated electrolyser could be mostly recovered by 0.5M H2SO4 solution treatment for 13 h. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available