4.7 Article

Evolution of Star-forming Galaxies from z=0.7 to 1.2 with eBOSS Emission-line Galaxies

Journal

ASTROPHYSICAL JOURNAL
Volume 871, Issue 2, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.3847/1538-4357/aaf9ad

Keywords

cosmology: observations; cosmology: theory; galaxies: distances and redshifts; galaxies: halos; galaxies: statistics; large-scale structure of universe

Funding

  1. National Key R&D Program of China [2015CB857003, 2015CB857002]
  2. National Science Foundation of China [11621303, 11655002, 11773049, 11833005, 11828302]
  3. 100 Talents Program of the Chinese Academy of Sciences
  4. Science and Technology Commission of Shanghai Municipality [16DZ2260200]
  5. Gauss Centre for Supercomputing e.V.
  6. Partnership for Advanced Supercomputing in Europe (PRACE)
  7. Alfred P. Sloan Foundation
  8. U.S. Department of Energy Office of Science
  9. Center for High-Performance Computing at the University of Utah
  10. Brazilian Participation Group
  11. Carnegie Institution for Science
  12. Carnegie Mellon University
  13. Chilean Participation Group
  14. French Participation Group
  15. Harvard-Smithsonian Center for Astrophysics
  16. Instituto de Astrofisica de Canarias
  17. Johns Hopkins University
  18. Kavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of Tokyo
  19. Lawrence Berkeley National Laboratory
  20. Leibniz Institut fur Astrophysik Potsdam (AIP)
  21. Max-Planck-Institut fur Astronomie (MPIA Heidelberg)
  22. Max-Planck-Institut fur Astrophysik (MPA Garching)
  23. Max-Planck-Institut fur Extraterrestrische Physik (MPE)
  24. National Astronomical Observatories of China
  25. New Mexico State University
  26. New York University
  27. University of Notre Dame
  28. Observatorio Nacional/MCTI
  29. Ohio State University
  30. Pennsylvania State University
  31. Shanghai Astronomical Observatory
  32. United Kingdom Participation Group
  33. Universidad Nacional Autonoma de Mexico
  34. University of Arizona
  35. University of Colorado Boulder
  36. University of Oxford
  37. University of Utah
  38. University of Virginia
  39. University of Washington
  40. University of Wisconsin
  41. Vanderbilt University
  42. Yale University
  43. University of Portsmouth

Ask authors/readers for more resources

We study the evolution of star-forming galaxies with 10(10)M(circle dot) < M-* < 10(11.6)M(circle dot) over the redshift range of 0.7 < z < 1.2 using the emission-line galaxies (ELGs) in the extended Baryon Oscillation Spectroscopic Survey (eBOSS). By applying the incomplete conditional stellar mass function (SMF) model proposed in Guo et al., we simultaneously constrain the sample completeness, the stellar-halo mass relation (SHMR), and the quenched galaxy fraction. We obtain the intrinsic SMFs for star-forming galaxies in the redshift bins of 0.7 < z < 0.8, 0.8 < z < 0.9, 0.9 < z < 1.0, and 1.0 < z < 1.2, as well as the SMF for all galaxies in the redshift bin of 0.7 < z <. 0.8. We find that the eBOSS ELG sample only selects about 1%-10% of the star-forming galaxy population at the different redshifts, with the lower redshift samples more complete. There is only weak evolution in the SHMR of the ELGs from z. =. 1.2 to z. =. 0.7, as well as the intrinsic galaxy SMFs. Our best-fitting models show that the central ELGs at these redshifts live in halos of mass M similar to 10(12)M(circle dot), while the satellite ELGs occupy slightly more massive halos of M similar to 10(12.6)M(circle dot). The average satellite fraction of the observed ELGs varies from 13% to 17%, with the galaxy bias increasing from 1.1 to 1.4 from z = 0.7 to 1.2.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available