4.7 Article

Exact traversable wormhole solution in bumblebee gravity

Journal

PHYSICAL REVIEW D
Volume 99, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.99.024042

Keywords

-

Funding

  1. Chilean FONDECYT [3170035]

Ask authors/readers for more resources

In this study, we found a new traversable wormhole solution in the framework of a bumblebee gravity model. With these types of models, the Lorentz symmetry violation arises from the dynamics of a bumblebee vector field that is nonminimally coupled with gravity. To this end, we checked the wormhole's flare-out and energy (null, weak, and strong) conditions. We then studied the deflection angle of light in the weak limit approximation using the Gibbons-Werner method. In particular, we show that the bumblebee gravity effect leads to a nontrivial global topology of the wormhole spacetime. By using the Gauss-Bonnet theorem (GBT), it is shown that the obtained non-asymptotically flat wormhole solution yields a topological term in the deflection angle of light. This term is proportional to the coupling constant, but independent from the impact factor parameter. Significantly, we showed that the bumblebee wormhole solutions, under specific conditions, support the normal matter wormhole geometries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available