4.2 Article

Empirical Study and Modeling of Vehicular Communications at Intersections in the 5 GHz Band

Journal

MOBILE INFORMATION SYSTEMS
Volume 2017, Issue -, Pages -

Publisher

HINDAWI LTD
DOI: 10.1155/2017/2861827

Keywords

-

Funding

  1. Ministerio de Economia y Competividad, Programa Estatal de Investigacion, Desarollo e Innovacion Orientada a los Retos de la Sociedad, Proyectos I+D+I, Spain [TEC2014-52690-R, BES-2015-075988]

Ask authors/readers for more resources

Event warnings are critical in the context of ITS, being dependent on reliable and low-delay delivery ofmessages to nearby vehicles. One of the main challenges to address in this context is intersection management. Since buildings will severely hinder signals in the 5GHz band, it becomes necessary to transmit at the exact moment a vehicle is at the center of an intersection to maximize delivery chances. However, GPS inaccuracy, among other problems, complicates the achievement of this goal. In this paper we study this problem by first analyzing different intersection types, studying the vehicular communications performance in each type of intersection through real scenario experiments. Obtained results show that intersection-related communications depend on the distances to the intersection and line-of-sight (LOS) conditions. Also, depending on the physical characteristics of intersections, the presented blockages introduce different degrees of hampering to message delivery. Based on the modeling of the different intersection types, we then study the expected success ratio when notifying events at intersections. In general, we find that effective propagation of messages at intersections is possible, even in urban canyons and despite GPS errors, as long as rooftop antennas are used to compensate for poor communication conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available